5 SEM TDC MTMH (CBCS) C 12

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-12

(Group Theory—II)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. (a) Choose the correct answer for the following question:

An automorphism is

- (i) a homomorphism but not one-one
- (ii) a homomorphism, one-one but not onto
- (iii) one-one, onto but not homomorphism
- (iv) a homomorphism, one-one and onto

P23/436

(Turn Over)

1

- (b) Show that a characteristic subgroup of a group G is a normal subgroup of G. Is the converse true? 2+2=4
- (c) Let G' be the commutator subgroup of a group G, then prove that G is abelian if and only if G' = {e}.
- (d) If N is a normal subgroup of a group G, G' is the commutator subgroup of G and $N \cap G' = \{e\}$, then show that $N \subseteq Z(G)$.
- (e) Show that, if $O(\operatorname{Aut} G) > 1$ then O(G) > 2. 3
- (f) Show that the set I(G) of all inner automorphism of a group G is a subgroup of Aut G.
- Answer any *two* of the following:

 $6 \times 2 = 12$

ю

(a) Let I(G) be the set of all inner automorphisms on a group G, then prove that

$$I(G) \approx \frac{G}{Z(G)}$$

(b) Prove that for every positive integer n, Aut (Z_n) is isomorphic to U(n).

(c) Let $R^n = \{(a_1, a_2, ..., a_n) \mid a_i \in R\}$. Show that the mapping

$$\phi : (a_1, \, a_2, \, ..., \, a_n) \to (-a_1, \, -a_2, \, ..., \, -a_n)$$

is an automorphism of the group R^n under component wise addition.

3. (a) Find the order of the element (1, 1) in $Z_{100} \oplus Z_{25}$.

2

- (b) Show that a group of order 4 is either cyclic or is an internal direct product of two cyclic groups of order 2 each. 3
- (c) Let G and H be finite cyclic groups. Prove that $G \oplus H$ is cyclic if and only if |G| and |H| are relatively prime.
- (d) If s and t are relatively prime, then prove that

$$U(st) \approx U(s) \oplus U(t)$$

Ç

9

How many elements of order 5 does $Z_{25} \oplus Z_5$ have?

- (e) If a group G is the internal direct product of a finite number of subgroups $H_1, H_2, ..., H_n$, then prove that G is isomorphic to the external direct product of $H_1, H_2, ..., H_n$.
- P23/**436**

P23/436

and $K = \{ x \in G | x^m = e \}.$ $G = H \times K$, where does not divide m then prove that order $p^n m$, where p is a prime that Let G be a finite abelian group of $H = \{x \in G | x^{p^n} = e\}$

- 4 (a) Define conjugate class of a
- *(b)* If $|G| = p^2$, where p is a prime, then prove that G is abelian. ω
- 0 element of G, then prove that Let G be a finite group and let a be an

$$|Cl(a)| = |G:C(a)|$$

ယ

- (d) non-trivial normal Sylow p-subgroup. Prove that a group of order 80 has a ယ
- (e) if and only if $a \in Z(G)$. Let G be a group. Prove that $Cl(a) = \{a\}$,
- simple. Prove that no group of order 56 is G

S

9

group G is normal if and only if it is the only Sylow p-subgroup of G. Prove that a Sylow p-subgroup of a

- *(g)* q are primes, p < q, and p does not If G is a group of order pq, where p and divide q-1, then prove that G is cyclic. G
- B Prove that any two Sylow p-subgroups of a finite group G are conjugate in G. 6

group. than 1, is not the order of a simple where n is an odd number greater Prove that an integer of the form $2 \cdot n$,

P23/436