1 SEM TDC MTMH (CBCS) C 1

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-1

(Calculus)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) Write the value of $\frac{d}{dx} \tanh x$.
 - (b) Write the curve on which the point (coshx, sinhx) lies.
 - (c) Write the interval on which 'secant' is one-to-one.
 - (d) Find y_n , if $y = \sin 5x \cos 2x$.

1

- (e) Find y_n , if $y = x^3 \sin x$.
- (f) Sketch the general shape of the graph of y = f(x), where $\frac{dy}{dx} = 2 + x x^2$.

P23/11 (Turn Over)

(g) Find y_n , if $y = e^{ax+b} \sin x$.

Evaluate $\lim_{x\to 0} \frac{\tan x - x}{x - \sin x}$.

(F) Find the asymptotes of the curve

 $y^2 - x^2 - 2x - 2y - 3 = 0$

ഗ

 $-\frac{2\pi}{3} \le x \le \frac{2\pi}{3}$, find the local maximum, which the curve is concave up and concave down. local minimum and the interval on curve $y = x + \sin 2x$,

- Ю <u>(a)</u> Write the washer's area with outer radius R(x) and inner radius r(x).
- (d) Obtain the reduction formula $\int x^n e^{-ax} dx$. for
- 0 Obtain the reduction $\cos^n x dx$ formula for

Find $\int \tan^4 x \, dx$.

(d) Find the value of $\int_0^1 \frac{\sin^3 x}{\cos^6 x} dx$.

S

curve $y = x^2$ and the line y = 0, x = 2, by revolving the region bounded by the Find the volume of the solid generated

Q

about x-axis.

- ω (a) Write the parametrization of the graph of the function $f(x) = x^2$.
- (d)If a curve is symmetric about x-axis and write which of the following also lies on the graph: the point (r, θ) lies on the graph, then
- (i) $(r, \pi \theta)$
- (ii) $(-r, \pi \theta)$
- (iii) $(-r, -\theta)$
- (iv) $(-r, \theta)$
- (c) Define a parametric curve

N

- (d) Write the polar equation of xy = 1.
- (e) Write the equivalent Cartesian equation of $r^2 \sin 2\theta = 2$. N
- S $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \text{which}$ Find the perimeter of the ellipse a > b and $0 \le t \le 2\pi$. parametrically by $x = a \sin t$, $y = b \cos t$ ıs. defined

(Turn Over)

(Continued)

P23/11

P23/11

Find the centroid of the first-quadrant arc of the asteroid $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$.

(g) Find the length of the curve $x = \cos t$, $y = t + \sin t$, $0 \le t \le \pi$.

Find the centre, foci, vertices of the conic section $x^2 + 2x + 4y - 3 = 0$.

Define a vector function. (a)

1

4

Write the value of $(\vec{u} \times \vec{v}) \cdot \vec{v}$. (b)

1

- Define triple scalar product of vectors. 2 (c)
- Show that vector and its first derivative (d) are orthogonal.

3

3

Evaluate $\int_0^1 (te^{t^2}\hat{i} + e^{-t}\hat{j} + \hat{k}) dt$.

(e) Find the unit tangent vector of the curve $\vec{r}(t) = \sin 2t \,\hat{i} + \cos 2t \,\hat{j} + \hat{k}, \ 0 \le t \le \pi.$

Find the acceleration of the particle described by $\vec{r} = (t-1)\hat{i} + (t^2-1)\hat{j} + 2t\hat{k}$ at t = 1.

P23-3200/11

1 SEM TDC MTMH (CBCS) C 1