5 SEM TDC PHYH (CBCS) C 11

2022

(Nov/Dec)

PHYSICS

(Core)

Paper: C-11

(Quantum Mechanics and Applications)

Full Marks: 53

Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer from the following: $1 \times 5 = 5$
 - (a) Planck constant has the dimensions of
 - (i) force
 - (ii) energy
 - (iii) action
 - (iv) linear momentum

P23/429

(Turn Over)

(Continued)

(b) The momentum sp ace wave functions are the Fourier transforms of

(i) expectation value of momentum

(ii) position space: wave functions

(iii) momentum ei genvalues

(iv) energy eigenfunctions

(c) The energy o'l a one-dimensional harmonic oscill ator in first excited state; is

(i) infinite (iii) $\frac{3}{2}\hbar\omega$

(ü) zero

(iv) $\frac{1}{2}\hbar\omega$

(d) The value of spin angular momentum for a one-electron atom is

(i) $\frac{1}{2}\hbar\omega$

(ii) $\frac{\sqrt{3}}{2}\hbar\omega$

ſiii) ħ

 $(iv) - \frac{\hbar}{2}$

(e) The value of Lande's g-factor for an s-electron is

(i) O

(ii) ½

(iii)

(iv) 2

2. Answer the following questions:

 $2 \times 6 = 12$

(a) What are the conditions for a wave-function to be physically acceptable?

(b) Define wave packet. With what velocity does a wave packet move?

(c) Briefly describe the relation between zero point energy and uncertainty principle of a Harmonic oscillator.

(d) What is Larmor precession? Define Bohr magneton.

(e) Briefly discuss the fine structure in sodium atom.

(f) State the basic differences between Paschen-Back and Stark effect.

3. (a) Prove the commutation relation $[x, p_x] = i\hbar$ 3

(b) Write down the wavefunction for ground state (Ψ_{100}) of a hydrogen atom. Show diagrammatically the polar representation of probability densities for s, p and d shells.

(c) What are orbital quantum number and magnetic quantum number? Write down the values of these quantum numbers for s, p and d shell. 2+2=4

P23/**429**

(Turn Over)

4. (a) What are momentum space wave functions? Show that momentum space wave function is Fourier transform of the position space wavefunction. 1+6=7

Or

Obtain an expression for the wavefunction of a Gaussian wave packet. Briefly explain the spread of a Gaussian wave packet. 5+2=7

(b) Obtain an expression for the energy of a simple harmonic oscillator using Frobenius method.

Or

Obtain the energy eigenvalues for a particle confined in a one dimensional square well potential.

5. (a) Show the L-S coupling for an electron in 4p4d configuration and determine the spectral terms.

5

7

7

7

(b) Distinguish between normal and anomalous Zeeman effect. Obtain an expression for the magnetic interaction energy for a single valence electron experiencing normal Zeeman effect.

P23—2000/429 5 SEM TDC PHYH (CBCS) C 11