3 SEM TDC MTMH (CBCS) C 6

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-6

(Group Theory—I)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. (a)	Write each symmetry in D_3 (the set of symmetries of an equilateral triangle).	1
(b)	What is the inverse of $n-1$ in $U(n)$, $n > 2$?	1
(c)	The set {5, 15, 25, 35} is a group under multiplication modulo 40. What is the identity element of this group?	1
(d)	Let a and b belong to a group G. Find an x in G such that $xabx^{-1} = ba$.	2
(e)	Show that identity element in a group is unique.	2
(f)	Find the order of each element of the group $(\{0, 1, 2, 3, 4\}, +_5)$.	3
P23 /54	(Turn Ove	er)

- (g) Show that the four permutations I, (ab),
 (cd), (ab)(cd) on four symbols a, b, c, d
 form a finite Abelian group with respect
 to the permutation multiplication.
- **2.** (a) In Z_{10} , write all the elements of <2>.
- (b) With the help of an example, show that union of two subgroups of a group G is not necessarily a subgroup of G.
- (c) Define centre of an element of a group and centre of a group.

2

- (d) Let G be a group and $a \in G$. Then prove that the set $H = \{a^n \mid n \in Z\}$ is a subgroup of G.
- (e) Prove that the centre of a group G is normal subgroup of G.
- (f) Let H and K be two subgroups of a group G. Then prove that HK is a subgroup of G if and only if HK = KH.
- 3. (a) If |a| = 30, find $< a^{26} >$.
- (b) List the elements of the subgroup < 20 > in Z_{30} .
- (c) Find all generators of Z_6 .
- (d) Express the permutation

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 3 & 4 & 2 \end{pmatrix}$$

as a product of disjoint cycles.

(Continued)

(e) Find O(f) where

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{bmatrix}$$

2

(f) Let a be an element of order n in a group and let k be a positive integer. Then prove that

$$< a^k > = < a^{\gcd(n, k)} > \text{ and } |a^k| = \frac{n}{\gcd(n, k)}$$

4

Q

Prove that any two right cosets are either identical or disjoint.

- (g) Prove that a group of prime order is cyclic.
- (h) State and prove Lagrange's theorem.

က ယ

- 4. (a) Define external direct product.
- (b) Compute $U(8) \oplus U(10)$. Also find the product (3, 7)(7, 9).

N

(c) Prove that quotient group of a cyclic group is cyclic.

ω

- (d) If H is a normal subgroup of a finite group G, then prove that for each $a \in G$, O(Ha)|O(a).
- (e) Let G be a finite Abelian group such that its order O(G) is divisible by a prime p.
 Then prove that G has at least one element of order p.

P23/**54**

(Turn Over)

Or

Let H be a subgroup of a group G such that $x^2 \in G$, $\forall x \in G$. Then prove that H is normal subgroup of G. Also prove that $\frac{G}{H}$ is Abelian.

- **5.** (a) Let (Z, +) and (E, +) be the group of integers and even integers respectively. Show that $f: Z \to E$ defined by f(x) = 2x, $\forall x \in Z$ is a homomorphism.
 - (b) Prove that a homomorphic image $f: G \to G'$ is one-one if and only if $\ker f = \{e\}$, where e is the identity of G.

2

- (c) Prove that every group G is isomorphic to a permutation group. 5
- (d) Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.

Or

Let H be a normal subgroup of G and K be a subgroup of G. Then prove that

$$\frac{HK}{H} \cong \frac{K}{H \cap K}$$

 $\star\star\star$

P23-2500/54 3 SEM TDC MTMH (CBCS) C 6