3 SEM TDC MTMH (CBCS) C 5

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper: C-5

(Theory of Real Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) State the divergence criteria of a limit of a function. 1+1=2
 - (b) Define cluster point of a set with an example. 1+1=2
 - (c) Use ε - δ definition to establish that

$$\lim_{x \to c} x^2 = c^2$$

P23/53

(Turn Over)

- (d) Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $c \in \mathbb{R}$, a cluster point of A. Show that if f has a limit, when $x \to c$, then f is bounded.
- (e) Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $c \in \mathbb{R}$, a cluster point of A. If $a \le f(x) \le b$, $\forall x \in A$ and $x \ne c$, and $\lim_{x \to c} f(x)$ exists, then show that

$$a \le \lim_{x \to c} f(x) \le b$$

ω

- (f) State and prove squeeze theorem. 1+3=4
- Show by using definition that

(9)

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$
 3

- (h) Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $c \in A$. Then establish any *one* of the following: 3
- (i) If f is continuous at $c \in A$, then given any ε -neighbourhood $V_{\varepsilon}(f(c))$ of f(c), \exists a δ -neighbourhood $V_{\delta}(c)$ of c, such that if $x \in A \cap V_{\delta}(c)$, then

$$f(x) \in V_{\varepsilon}(f(c)).$$

- (ii) Let given any ε -neighbourhood $V_{\varepsilon}(f(c))$ of f(c), \exists a δ -neighbourhood $V_{\delta}(c)$ of c, such that if $x \in A \cap V_{\delta}(c)$, then $f(x) \in V_{\varepsilon}(f(c))$. Then f is continuous at $c \in A$.
- Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and define |f| by (|f|)(x) = |f(x)|, $\forall x \in A$. Show that if f is continuous at $c \in A$, then |f| is also continuous at $c \in A$.

(i)

Ç

Let $f: A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $f(x) \ge 0$, $\forall x \in A$. Defined \sqrt{f} by $(\sqrt{f})(x) = \sqrt{f(x)}$, $\forall x \in A$. Show that if f is continuous at $c \in A$, then \sqrt{f} is continuous at c.

State and prove location roots theorem.
1+3

(i)

Q

Let I be a closed and bounded interval, and $f: I \to \mathbb{R}$ is continuous on I. Then show that $f: I \to \mathbb{R}$ is uniformly continuous.

- 2. (a) Define relative maximum of a real-valued function at a point.
- (b) State the first derivative test for the relative maximum at a point of a real-valued function.
- (c) Show that if $f: I \to \mathbb{R}$ is differentiable and $f(x) \ge 0$, $\forall x \in I$, then f is increasing on I.
- (d) Using first derivative test, show that $f(x) = x^2$ has a minima at x = 0.
- (e) State and prove the interior extremum theorem.

Q

Let $f: I \to \mathbb{R}$ be differentiable at c. If f'(c) < 0, then show that

f(x) > f(c), $\forall x \in (c - \delta, c)$

(f) State and prove Caratheodory's theorem.

(g) Use mean value theorem to show that if $f(x) = \sin x$ which is differentiable, $\forall x \in \mathbb{R}$, then

 $|\sin x - \sin y| \le |x - y| \quad \forall \ x, \ y \in \mathbb{R}$

Q

Use mean value theorem to show that

 $-x \le \sin x \le x \quad \forall \ x \ge 0$

(h) State and prove the mean value theorem.

(i) State and prove Darboux's theorem.

4

Ç

Use mean value theorem to show that

 $e^x \ge 1 + x \ \forall \ x \in \mathbb{R}$

and hence show that $e^{\pi} > \pi^{e}$.

3. (a) Define a convex function on an interval and give its geometrical interpretation.

1+1=2

(Continued)

P23/53

P23/**53**

(Turn Over)

- (b) Show that the function $f(x) = x^3$ has no relative extremum at x = 0. 0
- **(**0) Show that

$$f(x) = x + \frac{1}{x}; x > 0$$

is a convex function.

ω

(d) Determine relative extrema of the function

$$f(x) = x^4 + 2x^3 - k$$

where k is a constant.

ယ

- (e) State and prove Cauchy's mean value theorem. Q
- S State and prove Taylor's theorem with Lagrange's form of remainder. G
- *(g)* Define Taylor's and Maclaurin's series. Obtain Maclaurin's series for the function $\sin x$. 2+3=5

Ç

Show that

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{|2n|} \quad \forall \ x \in \mathbb{R}$$

Ċ
