1 SEM TDC GEMT (CBCS) GE 1 (A/B/C)

2022

(Nov/Dec)

MATHEMATICS

(Generic Elective)

Paper: GE-1

The figures in the margin indicate full marks for the questions

Paper: GE-1 (A)

(Differential Calculus)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

- 1. (a) কেতিয়া এটা ফলন f বন্ধ অন্তৰ [a, b]ত অনৱচ্ছিন্ন
 হোৱা বুলি কোৱা হয়?
 When is a function f said to be continuous in a closed interval [a, b]?
 - (b) তলৰ যি কোনো এটাৰ মান নিৰ্ণয় কৰা : 3

 Evaluate any one of the following :

(i)
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$$

(ii)
$$\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$$

P23/239

$$f(x) = (1+3x)^{1/x}, \quad x \neq 0$$

$$= e^3 \qquad , \quad x = 0$$

দেখুওৱা যে x=0 বিন্দুত ফলন অনৱচ্ছিন্ন। Show that the function f defined by

ω

$$f(x) = (1+3x)^{1/x}, \quad x \neq 0$$

= e^3 , $x = 0$

is continuous at x = 0.

(d) $y=(ax+b)^m$ ৰ n-তম অৱকলজ নিৰ্ণয় কৰা য'ত $n \le m$ আৰু $m, n \in N$.

where $n \le m$ and $m, n \in N$ Find the *n*-th derivative of $y = (ax + b)^m$

(e) यनि (If)

$$y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$

দেখুওৱা যে (show that)

$$(1-x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$$
 4

'n লিবনিটজৰ উপপাদ্যটো উল্লেখ কৰা আৰু প্ৰমাণ কৰা। State and prove Leibnitz's theorem.

S

অথবা / Or

यनि (If)

$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$

তেন্তে প্ৰমাণ কৰা যে (then prove that)

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

ω (a) যদি u=f(xyz) হয়, তেন্তে $\dfrac{\partial f}{\partial y}$ নিৰ্ণয় কৰা। If u = f(xyz), then find $\frac{\partial f}{\partial y}$

(b)

$$u = \sin^{-1}\left\{\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right\}$$

তেন্তে প্ৰমাণ কৰা যে (then prove that)

$$\frac{\partial u}{\partial x} = -\frac{y}{x} \frac{\partial u}{\partial y}$$

যদি $y = \sin^2 x$, তেন্তে y_n নিৰ্ণয় কৰা। If $y = \sin^2 x$, then find y_n .

<u>C</u>

P23/239

(Turn Over)

(Continued)

P23/239

(Continued)

(u) যদি $f= an^{-1}rac{\mathcal{Y}}{x}$ হয়, তেন্তে $rac{\partial f}{\partial x}$ নিৰ্ণয় কৰা। If $f = \tan^{-1} \frac{y}{x}$, then find $\frac{\partial f}{\partial x}$.

(b) দেখুওৱা যে এটা ফলন f(x)=|x|+|x-1|, এটা বিন্দু x=1 ত অনৱচ্ছিন্ন কিন্তু অৱকলনীয় নহয়। at x = 1, f(x) = |x| + |x - 1|. Show that the function f defined as follows, is continuous but not derivable

ယ

0

$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

তেন্তে দেখুওৱা যে (then show that)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(a) $y=x^2(a-x)$ বক্ৰৰ উপস্পৰ্শকৰ দৈৰ্ঘ্য নিৰ্ণয় কৰা। curve $y = x^2(a-x)$. Find the length of the subtangent to the

(b) দেখুওৱা যে, যি কোনো বক্ৰৰ ক্ষেত্ৰত

2

Show that in any curve

$$\frac{\text{subnormal}}{\text{subtangent}} = \left(\frac{\text{length of normal}}{\text{length of tangent}}\right)^2$$

6 (a) যি কোনো বক্ৰৰ ক্ষেত্ৰত উপস্পৰ্শকৰ সংজ্ঞা লিখা। Define subtangent to any curve.

(d) উপস্পৰ্শকৰ দৈৰ্ঘ্য নিৰ্ণয় কৰা। $x = a(\theta + \sin \theta)$ আৰু $y = a(1 - \cos \theta)$ বক্ৰৰ θ ত

 $x = a(\theta + \sin \theta)$ and $y = a(1 - \cos \theta)$ at θ . Find the lengths of subtangent to

7 তলত দিয়া বক্ৰৰ অনন্তস্পৰ্শী নিৰ্ণয় কৰা :

Find the asymptotes of the following curve:

$$x^3 - 2x^2y + xy^2 + x^2 - xy + 2 = 0$$

অথবা / Or

 $a^4y^2 = x^4(2x^2 - 3a^2)$ বক্রৰ অৱস্থান আরু দ্বি-বিন্দুৰ প্ৰকৃতি নিৰ্ণয় কৰা।

Find the position and nature of the double points of the curve $a^4y^2 = x^4(2x^2 - 3a^2)$.

œ তলৰ যি কোনো এটাৰ মান নিৰ্ণয় কৰা :

(a) $y = x(x^2 - 1)$ বক্ৰৰ অনুৰেখন নিৰ্ণয় কৰা। Evaluate any one of the following:

Trace the curve $y = x(x^2 - 1)$.

(b) দেখুওৱা যে $r=a(1-\cos\theta)$ কাৰডিয়ইডৰ যি কোনো বিশু (r, θ) ত বক্রতা ব্যাসার্থ $\frac{2}{3}\sqrt{2ar}$.

any point (r, θ) of the cardioid $r = a(1 - \cos\theta)$ is given by $\frac{2}{3}\sqrt{2ar}$. Show that the radius of curvature at

P23/239

condition for any point (x, y) on the curve State and prove the necessary and sufficient প্ৰয়োজনীয় আৰু পৰ্যাপ্ত চৰ্ত উল্লেখ কৰি প্ৰমাণ কৰা। f(x, y) = 0 বক্ৰৰ যি কোনো বিন্দু (x, y)ত বহু বিন্দু হোৱাৰ f(x, y) = 0 to be a multiple point.

অথবা / Or

বিশুত বক্ৰতা ব্যাসাৰ্থ নিৰ্ণয় কৰা। এটা বক্ৰৰ কাৰ্টেচিয়ান সমীকৰণ y=f(x) হ'লে বক্ৰৰ এটা

Cartesian equation of the curve y = f(x). Find the radius of curvature at a point of the

10. ৰোলৰ উপপাদ্যটো লিখা।

State the Rolle's theorem

 $f(b) = -1, \ 1]$ অন্তৰালত $f(x) = rac{1}{2-x^2}$ ফলনৰ বাবে ৰোলৰ উপপাদ্য প্ৰতিপন্ন কৰা।

Verify Rolle's theorem for the function

2

$$f(x) = \frac{1}{2 - x^2}$$

in the interval [-1, 1].

<u>C</u> মধ্যমান উপপাদ্য $f(b)-f(a)=(b-a)f'(\xi)$ প্রতিপন্ন আৰু 5 ৰ মান নিৰ্ণয় কৰা। কৰা য'ত f(x) = x(x-1)(x-3), a=0, $b=\frac{1}{2}$

Verify the applicability of the mean value theorem $f(b) - f(a) = (b-a)f'(\xi)$, $a < \xi < b$ if f(x) = x(x-1)(x-3), where a = 0, $b = \frac{1}{2}$. Also find the value of ξ .

লাগ্ৰাঞ্জৰ মধ্যমান উপপাদ্য উল্লেখ কৰি প্ৰমাণ কৰা। State and prove Lagrange's mean value

S

মেকলৰিনৰ উপপাদ্য ব্যৱহাৰ কৰি sin xক x-ৰ সূচকত অসীম শ্ৰেণীত বিস্তৃতি কৰা

S

an infinite series in powers of x. Using Maclaurin's theorem, expand $\sin x$ in

12. (a) यति (If)

$$f(x) = f(0) + xf'(0) + \frac{x^2}{[2]}f''(\theta x)$$

then find θ when $x \to 1$ and where $f(x) = (1-x)^{5/2}$. $f(x) = (1-x)^{5/2}.$ তেন্তে θ ৰ মান উলিওৱা যেতিয়া $x \to 1$ আৰু য'ত

ω

(d) $f(x, y) = x^3 + y^3 - 3x - 12x + 20$ values of the function Find the maximum and minimum সৰ্বোচ্চ আৰু সৰ্বনিম্ন মান নিৰ্ণয় কৰা।

$$f(x, y) = x^3 + y^3 - 3x - 12x + 20$$

(Continued)

P23/239

P23/239

P23/239

- (Continued)

P23/239

(Turn Over)

(a) $\log x$ ক x-1ৰ সূচকত বিম্তৃতি কৰা য'ত $0 < x \le 2$.

 $0 < x \le 2$. Expand $\log x$ in powers of x-1 where

Œ তলৰ যি কোনো এটাৰ মান নিৰ্ণয় কৰা : Evaluate any one of the following:

(i) $\lim_{x \to 1} \left\{ \frac{x}{x - 1} - \frac{1}{\log x} \right\}$

- (ii) $\lim_{x\to 0} (\cos x)^{\cot^2 x}$
- 14. (a) লাগ্ৰাঞ্জৰ ৰূপৰ অৱশেষ থকা মেক্লবিনৰ উপপাদ্য লিখা। Lagrange's form of remainder. Write the Maclaurin's theorem with
- *(b)* মেকলৰিনৰ অসীম শ্ৰেণী ব্যৱহাৰ কৰি $\log(1+x)$ ৰ বিম্তৃতি কৰা য'ত −1 < x < 1.

S

infinite series where -1 < x < 1. Expand $\log(1+x)$ using Maclaurin's

অথবা / Or

প্ৰমাণ কৰা। লাগ্ৰাঞ্জৰ ৰূপৰ অৱশেষ থকা টেইলৰৰ উপপাদ্য লিখি

State and prove Taylor's theorem with Lagrange's form of remainder.

Paper: GE-1 (B)

(Object-Oriented Programming in C++)

Pass Marks: 24 Full Marks: 60

Time: 3 hours

1. Answer the following questions:

- (a) Define abstraction.
- (b)State one difference between C and C++.
- Q Write one characteristic of objectoriented programming language.
- (d)What is the use of <iostream.h>?
- (e) How are objects created from a class?
- ы Answer any five of the following questions:
- (a) When do you declare a method or class abstract?
- *(b)* Briefly explain the structure of C++ program.
- (c) new classes? How does inheritance help us to create
- (d) Why can we not override static method?

- (f) Define default constructor and copy constructor.
- 3. Answer any five of the following questions:

 $3 \times 5 = 15$

(a) Explain the following operators and their uses :

cin, cout and delete.

- (b) Explain the three access modifiers.
- (c) What is dynamic binding? Define message passing.
- (d) State the difference between break and continue with example.
- (e) Define file pointer. What is function prototyping? Explain with example.
- (f) Explain the increment and decrement operators in brief.
- **4.** Answer any *four* of the following questions:

5×4=20

- (a) Write a C++ program to store information of a book in a structure.
- (b) Write a C++ program to overload a unary operator.

- (c) Write a C++ program to display Fibonacci series up to 50.
- (d) Write a C++ program to implement friend function.
- (e) Write a C++ program to count the number of objects created.
- **5.** (a) Explain the different types of inheritance with examples and diagrams.

 \Im

10

(b) Explain inline and virtual functions with suitable example.

Paper: GE-1 (C)

Finite Element Methods)

Pass Marks: 32 Full Marks: 80

Time: 3 hours

(a) Write True or False: application of a variational method. The finite-element method is a piecewise

(b) element methods. Write down the differences between finite difference methods and finite

ω

<u>C</u> Consider the boundary value problem

$$u'' + (1 + x^2)u + 1 = 0$$

approximate solution Determine the coefficients of the

$$W(x) = a_1(1-x^2) + a_2x^2(1-x^2)$$

by using the least square method

ഗ

Q

boundary value problem

$$v \ u = -1, |x| \le 1, |y|$$
 $u = 0, |x| = 1, |y|$
 1

P23/239

 $\nabla^2 u = -1, |x| \le 1, |y| \le 1$ u = 0, |x| = 1, |y| = 1

Using Galerkin's method, solve the

with $h = \frac{1}{2}$.

(Continued)

Find the variational functional for the

boundary value problem

$$u'' = u - 4 x e^{-x}$$

 $u'(0) - u(0) - 1, \quad u'(1) + u(1) = -e$ 5

State and prove the Lax-Milgram

(e)

ы (a) The application of the finite element method to the boundary value problem

$$u(0) \quad u(1) = 0$$

vector b for four elements of equal Determine the matrix A and the column leads to the system of equations Au = b

(d) Apply Galerkin method to the boundary value problem

$$\nabla^2 u + \lambda u = 0, |x| \le 1, |y| \le 1$$

 $u = 0, |x| = 1, |y| = 1$

to get the characteristic equation in the form $|A - \lambda B| = 0$.

(a) Define assembly of equations. the element

ω

(b) one-dimensional problem to assembly of Define two principles that were used in finite element equations.

P23/239

(c) Discuss briefly with an example about the element assemblage in finite clement method.

ω

- (d) Write down the importance of sparse matrix in the process of element assemblage with an example.
- (e) If the finite solutions at any point (x, y) in an element Ω^e is given by

$$U(x, y) = \sum_{J=1}^{\infty} U_J^e \psi_J^e(x, y)$$

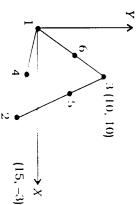
Find its derivatives.

2

- **4.** (a) State the properties for a quadratic triangular element.
- (b) Give an example of triangular element with a common node.
- (c) Illustrate the process of discretization in two-dimensional domain with a suitable example.
- (d) Write the importance of isoperimetric element in the process of element assemblage with an example.
- 5. (a) Write True or False:

Finite element modelling involves assumptions concerning the representation of the system and its behaviour.

- (b) Write about interpolating function in finite element method. Find an expression for interpolating function in one-dimensional domain.
- (c) Calculate the interpolation function for the quadratic triangular element shown in the figure:

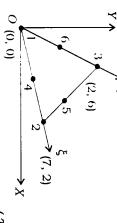


(d) Evaluate the integral of the form

$$I=\int_{(e)}F(x)\,dx$$

for the triangular element where F(x) is given function, (c) is the element and x represents multidimensional coordinates.

Consider the quadratic triangular element shown in the figure:



(Turn Over)

P23/**239**

(Continued)

P23**/239**

Evaluate the integral of the product

$$\left(\frac{\partial \psi_1}{\partial x}\right) \left(\frac{\partial \psi_4}{\partial x}\right)$$

at the point (x, y) = (2, 4).

- **6.** (a) What are the different types of partial differential equations? Write their field in applications.
 - (b) Find the solution of the boundary value problem

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{1 + e^u}{2} = 0, \quad |x| \le 1, \quad |y| \le 1$$

$$u = 0, \quad |x| = 1, \quad |y| = 1$$

by finite element method (use the three node triangular element).

(c) Use finite element method to solve the boundary value problem

$$\nabla^2 u = -1, \quad |x| \le 1, \quad |y| \le 1$$
$$\frac{\partial u}{\partial x} + u = 0 \quad , \quad |x| = 1, \quad |y| = 1$$
with $h = \frac{1}{2}$.

1 SEM TDC GEMT (CBCS) GE 1 (A/B/C)

4

P23-3500/239