1 SEM TDC CHMH (CBCS) C 1

2022

(Nov/Dec)

CHEMISTRY

(Core)

Paper: C-1

(Inorganic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

1×6=6

(a) Which of the following are the possible values of n, l and m for an atom having maximum value of $m = \pm 2$?

(i)
$$n = 4$$
, $l = 3$, $m = +2$

(ii)
$$n = 3$$
, $l = 2$, $m = -2$

(iii)
$$n = 3$$
, $l = 3$, $m = +2$

(iv)
$$n = 4$$
, $l = 3$, $m = -2$

P23/233

(Turn Over)

- ð Li^{2+} is is -13.6 eV. Ground-state energy for
- (i) -3·4 eV
- (iii) -40·8 eV

(ii) -13·6 eV

- (iv) -122.5 eV
- 0 highest electronegativity? Which of the following species has the
- (i) C [sp-hybridized]
- (ii) N $[sp^2$ -hybridized]
- (iii) N [sp-hybridized]
- (iv) C [sp³-hybridized]
- (d) lattice energy? Which of the following has highest
- (i) BeO
- (ii) MgO
- (iii) CaO
- (iu) SrO
- (e) square planar complexes? What type of hybridization is possible in
- (i) sp^3d
- (ii) sp^3d^2
- (iii) dsp^2
- (iv) d^4s

- The ground-state energy for H atom
- (i) MgCl₂

covalent character?

S

Which

compound

has

maximum

- (ii) BeCl₂
- (iii) BaCl₂
- (iv) CaCl₂
- 'n Answer the following questions:
- $2 \times 9 = 18$
- <u>a</u> State statement of the principle in terms of energy and time. principle. Heisenberg's Write the mathematical uncertainty
- Œ Calculate the wavelength (in nanoat 1.0×10^3 ms⁻¹. [Mass of the proton = 1.67×10^{-27} kg and $h = 6.63 \times 10^{-34}$ J-s] meter) associated with a proton moving
- 0 and ψ^2 . equation and give the significance of w Write down the Schrödinger's wave
- (d) What is Born-Haber cycle? Explain its applications and limitations
- (e) curve for 2p-orbital. function? Draw the radial distribution What is radial probability distribution

P23/233

(Continued)

(Turn Over)

- S What do you mean by polarization? Discuss Fajan's rules
- *(g)* Draw different shapes of the d-orbitals
- B energy and lattice energy of an ionic What is the relation between solvation crystal? Justify with suitable example
- \tilde{c} 4s-orbital filled first followed by 3d. orbital, but removal of electron initially take place from 4s. Why, give reason

Q

increasing bond order or bond length: Arrange the following in order of

 $O_2; O_2^-; O_2^+; O_2^{2+}$

- **3.** Answer any *two* of the following questions: 4×2=8
- **(a)** How can lattice energy of an ionic crystal be calculated theoretically? of Born-Landé equation. Deduce the equation. Give the limitation
- *(b)* (i)The first ionization energy of Be is second ionization energy of B is giving reason. higher than that of Be. Explain higher than that of B, while the

(ii) Explain why the dipole moment of NF₃ is nearly zero.

- 0 theory : properties of metals in terms of Band band theory. Discuss the metallic bonding in terms of Explain the following
- (i) Semi-conductor and conductor
- (ii) Insulator

Answer any two of the following questions:

- <u>(a)</u> Define Pauling scale of electronegativity. The ionic resonance energy negativity of H is 2.1. Find the electroof C-H bond is 5.75 kcal. The electronegativity of carbon. ယ
- *(b)* following molecules and ions: Draw the resonating structures of the
- (i) O_3
- (ii) NO $\frac{1}{3}$
- (iii) $CO_3^{=}$

P23/233

(Continued)

(c) What is lattice energy? Calculate the lattice energy of NaCl with the help of the following data: 1+2=3

Electronic charge = 4.8×10^{-10} esu Born exponent = 9 Madelung constant for NaCl = 1.748

Ionic radius of Na⁺ = 0.95 ÅIonic radius of Cl⁻ = 1.81 ÅAvogadro no. (N) = 6.023×10^{23}

- (d) What do you mean by hydrogen bonding? Mention the electrostatic theory of hydrogen bonding and discuss its limitation. 1+1½+½=3
- **5.** Answer any *four* of the following questions: $3 \times 4 = 12$
- (a) What is formal charge? Calculate the formal charge in CO_3^{2-} ion. $1\frac{1}{2}+1\frac{1}{2}=3$
- (b) Define Slater's rule. Calculate the effective nuclear charge for valence electron of K atom.
- (c) Draw the molecular orbital energy level diagram for O₂ molecule. Explain the paramagnetic nature of O₂ with MOT.

2+1=3

(d) Using VSEPR theory, predict the structure of the following: 1×3=3

(i) BF_3

(ii) XeO₃

(iii) PC1₅

(e) What are weak intermolecular forces?
Outline the role of induced dipole interaction in inter-molecular bonding.

11/2+11/2=3

(f) Explain the following:

1½×2=3

(i) o-Nitrophenol is more volatile than p-nitrophenol.

(ii) Boiling point of $H_2O>HF>NH_3$ although electronegativity of F>O>N.

How is standard electrode potential used in the volumetric estimation of oxalate using KMnO₄? Why is KMnO₄ a secondary standard?

P23/233

P23-3000/233